Turbulent thermal superstructures in Rayleigh-Bénard convection
نویسندگان
چکیده
منابع مشابه
Thermal boundary layer equation for turbulent Rayleigh-Bénard convection.
We report a new thermal boundary layer equation for turbulent Rayleigh-Bénard convection for Prandtl number Pr>1 that takes into account the effect of turbulent fluctuations. These fluctuations are neglected in existing equations, which are based on steady-state and laminar assumptions. Using this new equation, we derive analytically the mean temperature profiles in two limits: (a) Pr≳1 and (b)...
متن کاملWind reversals in turbulent Rayleigh-Bénard convection.
The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-Bénard convection is theoretically analyzed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose dynamics is related to the Lorenz equations. For Prandtl and Rayleigh numbers in the range 10(-2)...
متن کاملHeat transport measurements in turbulent rotating Rayleigh-Bénard convection.
We present experimental heat transport measurements of turbulent Rayleigh-Bénard convection with rotation about a vertical axis. The fluid, water with a Prandtl number (sigma) of about 6, was confined in a cell with a square cross section of 7.3 x 7.3 cm2 and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10(5)<Ra<5 x 10(8) and Taylor numbers 0<Ta<5 x 10(9). We show th...
متن کاملOscillating large-scale circulation in turbulent Rayleigh-Bénard convection.
We report on the dynamics and structure of the turbulent velocity field in a high-Rayleigh-number (Ra = 5.9 x 10(8))thermal convection cell with an aspect ratio of 4. Spectral density functions (measured with laser Doppler velocimetry) indicated the existence of a large-scale periodic component. The long-time mean flow field (measured with particle image velocimetry) revealed that the large-sca...
متن کاملLogarithmic temperature profiles in turbulent Rayleigh-Bénard convection.
We report results for the temperature profiles of turbulent Rayleigh-Bénard convection (RBC) in the interior of a cylindrical sample of aspect ratio Γ≡D/L=0.50 (D and L are the diameter and height, respectively). Both in the classical and in the ultimate state of RBC we find that the temperature varies as A×ln(z/L)+B, where z is the distance from the bottom or top plate. In the classical state,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Fluids
سال: 2018
ISSN: 2469-990X
DOI: 10.1103/physrevfluids.3.041501